- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bukkapatnam, Satish (2)
-
Ding, Yu (2)
-
Jin, Shilan (2)
-
Gaynor, Andrew (1)
-
Iquebal, Ashif (1)
-
Michael Hayes, Sean (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The research reported in this article is concerned with the question of detecting and subsequently determining the endpoint in a long-stretch, ultraprecision surface polishing process. While polishing endpoint detection has attracted much attention for several decades in the chemical-mechanical planarization of semiconductor wafer polishing processes, the uniqueness of the surface polishing process under our investigation calls for novel solutions. To tackle the research challenges, we develop both an offline model and an online detection method. The offline model is a functional regression that relates the vibration signals to the surface roughness, whereas the online procedure is a change-point detection method that detects the energy turning points in the vibration signals. Our study reveals a number of insights. The offline functional regression model shows clearly that the polishing process progresses in three states, including a saturation phase, over which the polishing action could be substantially shortened. The online detection method signals in real-time when to break a polishing cycle and to institute a follow-up inspection, rather than letting the machine engage in an overpolishing cycle for too long. When implemented properly, both sets of insights and the corresponding methods could lead to substantial savings in polishing time and energy and significantly improve the throughput of such polishing processes without inadvertently affecting the quality of the final polish.more » « less
-
Jin, Shilan; Iquebal, Ashif; Bukkapatnam, Satish; Gaynor, Andrew; Ding, Yu (, Journal of Manufacturing Science and Engineering)Abstract Polishing of additively manufactured products is a multi-stage process, and a different combination of polishing pad and process parameters is employed at each stage. Pad change decisions and endpoint determination currently rely on practitioners’ experience and subjective visual inspection of surface quality. An automated and objective decision process is more desired for delivering consistency and reducing variability. Toward that objective, a model-guided decision-making scheme is developed in this article for the polishing process of a titanium alloy workpiece. The model used is a series of Gaussian process models, each established for a polishing stage at which surface data are gathered. The series of Gaussian process models appear capable of capturing surface changes and variation over the polishing process, resulting in a decision protocol informed by the correlation characteristics over the sample surface. It is found that low correlations reveal the existence of extreme roughness that may be deemed surface defects. Making judicious use of the change pattern in surface correlation provides insights enabling timely actions. Physical polishing of titanium alloy samples and a simulation of this process are used together to demonstrate the merit of the proposed method.more » « less
An official website of the United States government
